Nitsche-mortaring for singularly perturbed convection-diffusion problems

نویسندگان

  • Torsten Linß
  • Hans-Görg Roos
  • Martin Schopf
چکیده

A finite element method for a singularly perturbed convection-diffusion problem with exponential boundary layers is analysed. Using a mortaring technique we combine an anisotropic triangulation of the layer region (into rectangles) with a shape regular one of the remainder of the domain. This results in a possibly non-matching (and hybrid), but layer adapted mesh of Shishkin type. We study the error of the method allowing different asymptotic behavior of the triangulations and prove uniform convergence and a supercloseness property of the method. Numerical results supporting our analysis are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

N -widths for Singularly Perturbed Problems

Kolmogorov N-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.

متن کامل

An ε-Uniform Initial Value Technique For Convection-Diffusion Singularly Perturbed Problems

In this paper, we have proposed an ε-uniform initial value technique for singularly perturbed convection-diffusion problems in which an asymptotic expansion approximation of the solution of boundary value problem is constructed using the basic idea of WKB method. In this computational technique, the original problem reduces to combination of an initial value problem and a terminal value problem...

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012